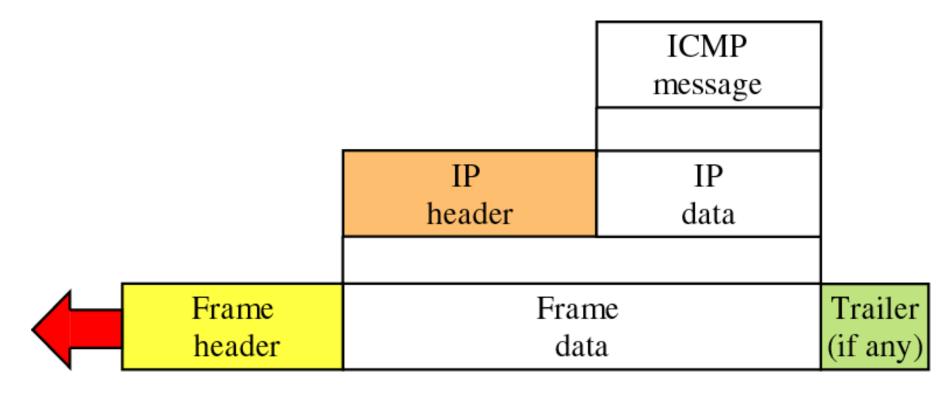

9.1 Introduction

- IP protocol has no error-reporting or error-correcting mechanism
 - When errors occur, no built-in mechanism to notify the original host
- IP protocol also lacks a mechanism for host and management queries
 - A host sometimes needs to determine if a router or another host is alive
 - Network manager needs information from another host and router

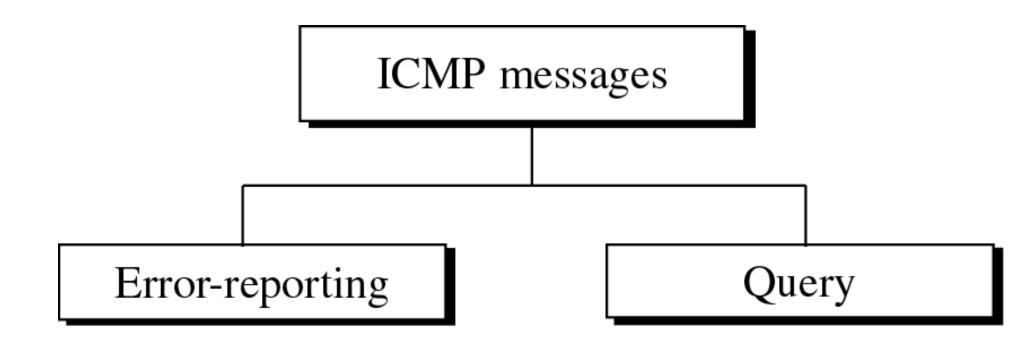
Introduction (cont'd)

Position of ICMP in the network layer



Introduction (cont'd)

ICMP encapsulation


• The value of the protocol field in the IP datagram : 1

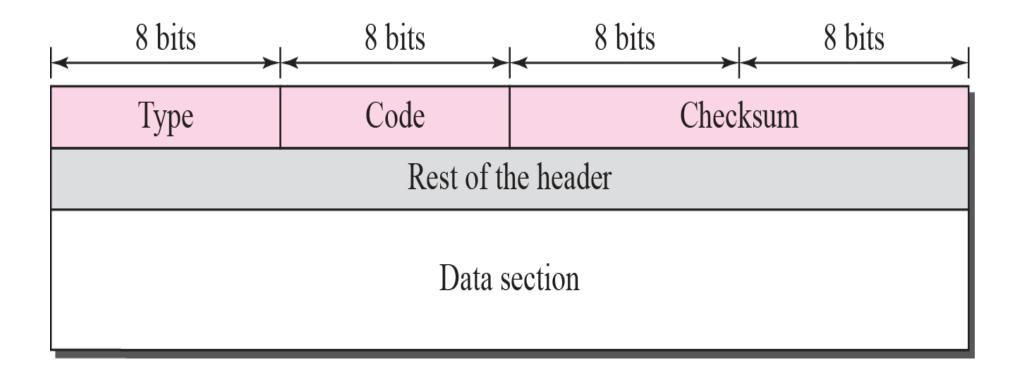
9.2 Types of Message

Category of ICMP messages

Types of Message (cont'd)

□ ICMP messages

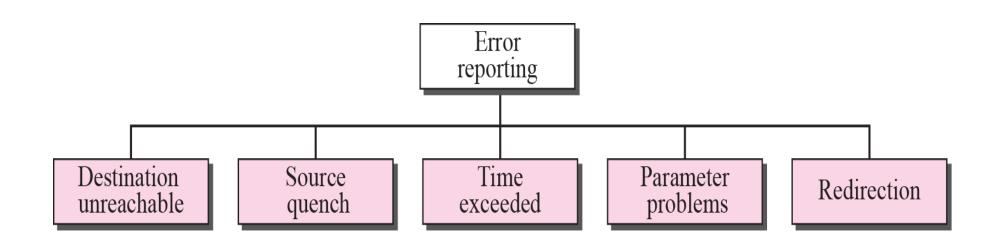
Category	Туре	Message
	3	Destination unreachable
	4	Source quench
Error-reporting	11	Time exceeded
messages	12	Parameter problem
	5	Redirection
Query	8 or 0	Echo request or reply
messages	13 or 14	Timestamp request or reply


Message Format

Having 8 byte header and variable-size data section

- ICMP type : defining the type of the message
- Code field : specifying the reason for the particular message type
- Checksum field (for header and message)
- Data section
 - In error message, carrying information for finding the original packet which caused the error
 - In query message, carrying extra information based on the type of the query

Message Format (cont'd)


Error Reporting Message

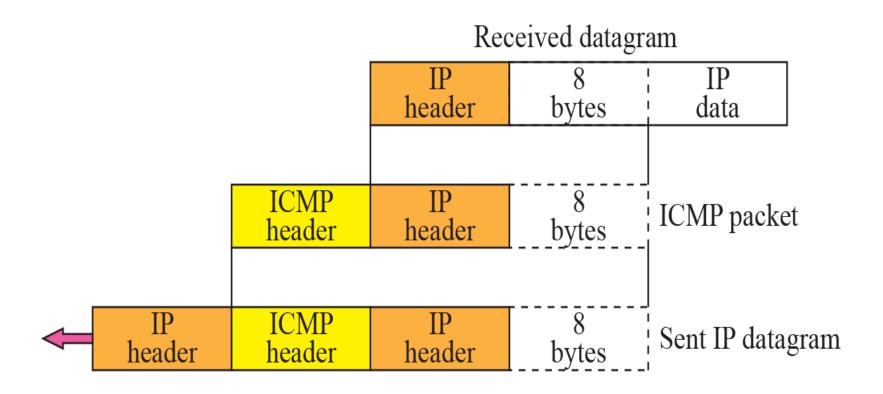
- **Error checking and control**
- Not correcting errors : it is left to the higher level protocols
- Always reporting error messages to the original source

Error Reporting Message

Error-reporting messages

Important points about ICMP error messages

- No ICMP error message will be generated in response to a datagram carrying an ICMP error message
- No ICMP error message will be generated for a fragmented datagram that is not the first fragment
- No ICMP error message will be generated for a datagram having a multicast address
- No ICMP error message will be generated for a datagram having a special address such as 127.0.0.0 or 0.0.0.0



□ All error messages

- containing a data section that includes the IP header of the original datagram + the first 8 bytes of data in that IP datagram
 - 8 bytes of data : port # (UDP and TCP) and sequence # (TCP)
 - Used for informing to the protocols (TCP or UDP) about the error situation

Contents of data field for the error messages

Destination Unreachable

- When a router cannot route a datagram or a host cannot deliver a datagram, the datagram is discarded.
- Then, the router or the host sends a destination unreachable message back to the source that initiated the datagram.
- Destination unreachable format

Type: 3	Code: 0 to 15	Checksum	
Unused (All 0s)			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

- Code 0 : network is unreachable, due to hardware failure, can only be generated by a router
- Code 1 : host is unreachable, due to hardware failure, can only be generated by a router
- **Code 2 :** protocol such as UDP, TCP or OSPF is not running at the moment.
 - generated only by the destination
- Code 3 : the application program (process) that the datagram is destined for is not running at the moment
- Code 4 : Fragmentation is required, but the DF (do not fragment) field has been set
- **Code 5 :** Source routing cannot be accomplished
- **Code 6 :** The destination network is unknown.
 - A router has no information about the destination network

Code 7: The destination host is unknown.

the router is unaware of the existence of the destination

- **Code 8 :** The source host is isolated
- Code 9 : Communication with the destination network is administratively prohibited
- Code 10 : Communication with the destination host is administratively prohibited
- **Code 11 :** the network is unreachable for the specified type of service
- **Code 12 :** The host is unreachable for the specified type of service

Code 13 : The host is unreachable because the administration has put a filter on it

Code 14 : The host is unreachable because the host precedence is violated. The requested precedence is not permitted for the destination

Code 15 : The host is unreachable because its precedence was cut off. This message is generated when the network operators have imposed a minimum level of precedence for the operation of the network

- Destination-unreachable messages with codes 2 or 3 can be created only by the destination host. Other destination-unreachable message can be created only by routers.
- A router can not detect all problems that prevent the delivery of a packet.
 - The case that a datagram is traveling through an Ethernet network.
 - Ethernet does not provide any acknowledgement mechanism.

Source Quench

- is designed to add a kind of flow control to the IP
 - IP does not have a flow-control mechanism embedded in the protocol
- when a router or host discards a datagram due to congestion, it sends a source-quench message to the sender of the datagram

making slow down the sending process

Type: 4	Code: 0	Checksum	
Unused (All 0s)			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Time exceeded

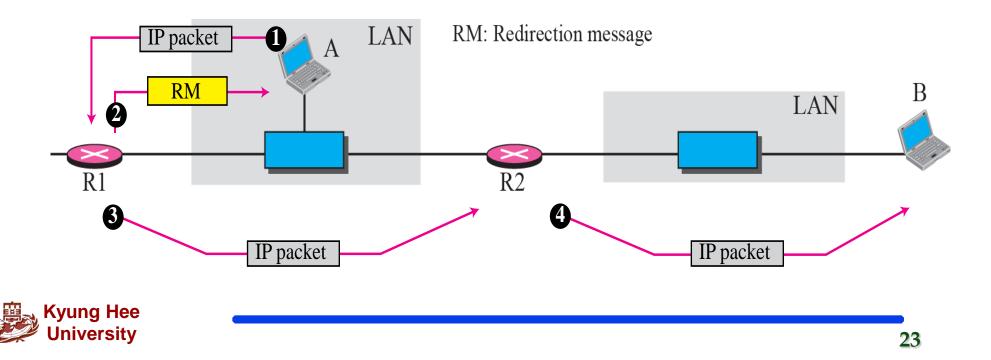
- Whenever a router receives a datagram whose time-tolive field has the value of zero, it discards the datagram and sends a time-exceeded message to the original source
- When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source

In a time-exceeded message, code 0 is used only by routers to show that the value of the time-to-live field is zero. Code 1 is used only by the destination host to show that not all of the fragments have arrived within a set time

□ Time-exceeded message format

Туре: 11	Code: 0 or 1	Checksum	
Unused (All 0s)			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Parameter-problem


- A parameter-problem message caused by ambiguity in the header part can be created by a router or the destination host
- Code 0 : error or ambiguity in one of the header fields
 - the value in the pointer field points to the byte with the problem
- Code 1 : the required part of an option is missing. In this case, pointer is not used

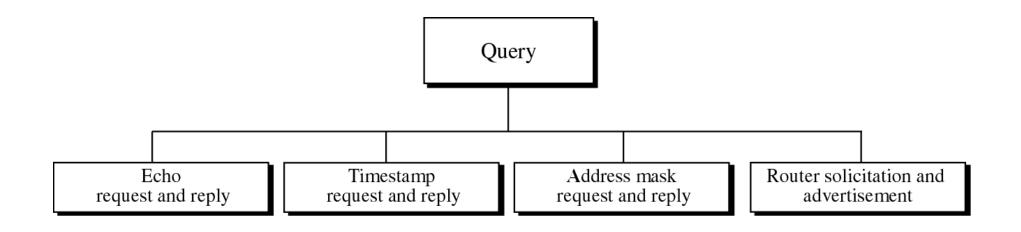
Туре: 12	Code: 0 or 1	Checksum		
Pointer	Unused (All 0s)			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

Redirection

- A host usually starts with a small routing table that is gradually augmented and updated. One of the tools to accomplish this is the redirection message.
- A redirection message is sent from a router to a host on the same local network.

Redirection message format

Type: 5	Code: 0 to 3	Checksum	
IP address of the target router			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			


- Code 0 : redirection for the network-specific route
- Code 1 : redirection for the host-specific route
- Code 2 : redirection for network-specific route based on specific type of service
- Code 3 : redirection for the host-specific route based on the specified type of service

Diagnosing some network problems

□ 4 different pairs of messages

Echo Request and Reply messages

- designed for diagnostic purpose
- the combination of echo-request and echo-reply messages determines whether 2 systems (hosts or routers) can communicate with each other
- An echo-request message can be sent by a host or router. An echo-reply message is sent by the host or router which receives an echo-request message
- Echo-request and echo-reply message can be used by network managers to check the operation of the IP protocol

- Echo-request and echo-reply messages can test the reachability of a host. This is usually done by invoking the ping command
- Identifier and sequence number fields are not formally defined by the protocol and can be used by the sender
- Echo-request and echo-reply message
 - Type 8 : Echo request Type 0: Echo reply

Type: 8 or 0	Code: 0	Checksum	
Identifier		Sequence number	
Optional data Sent by the request message; repeated by the reply message			

- The identifier field
 - defines a group of problems
 - ex) process ID that originated the request
- **The sequence number field**
 - keeps track of the particular echo request messages sent
- At the user level
 - Invoking the packet Internet groper (ping) command

Timestamp Request and Reply

- 2 machines (routers or hosts) can use the timestamprequest and timestamp-reply messages to determine the round-trip time needed for an IP datagram to travel between them
- can used to synchronize the clocks in two machines
- Three timestamp fields are each 32 bits long
 - holding a number representing time measured in milliseconds from midnight in Universal Time
 - Cannot exceed 86,400,000 = 24 x 60 x 60 x 1,000

Timestamp-request and reply message format

- Type 13 : Request - Type 14 : Reply

Type: 13 or 14	Code: 0	Checksum	
Identifier		Sequence number	
Original timestamp			
Receive timestamp			
Transmit timestamp			

- original timestamp field : clock at departure time
- receive timestamp field : at the time the request was received
- transmit timestamp field : at the time the reply message departs

The formulas for computing the one-way or round-trip time required for a datagram to go from a source to a destination and then back again.

- Sending time = value of receive timestamp value of original time stamp
- Receiving time = time the packet returned value of transmit timestamp
- Round-trip time = sending time + receiving time

Timestamp-request and timestamp reply message can be used to measure the round-trip time between a source and a destination machine even if their clocks are not synchronized

Example

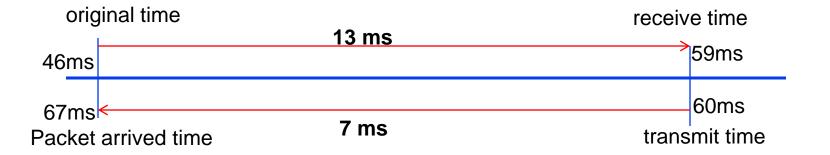
□ Value of original timestamp : 46

- □ Value of receive timestamp : 59
- □ Value of transmit timestamp : 60

□ Time the packet arrived : 67

Sending time = 13 ms

Receiving time = 7 ms

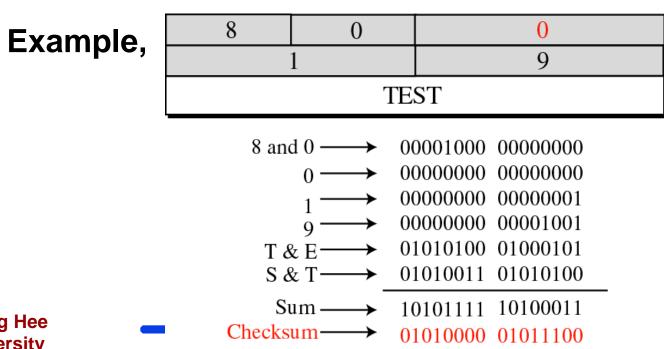

Round-trip time = 20 ms

Synchronizing clocks between two machines

- Time difference = receive timestamp (original timestamp field + oneway time duration)
- In previous example,

□ Time difference = 59 - (46 + 10) = 3

Checksum


Checksum

- calculating over the entire message (header and data)
- Checksum calculation
 - **1.** Checksum field is set to zero
 - 2. Sum of all the 16-bit words (header and data) is calculated
 - 3. Sum is complemented to get the checksum
 - 4. Checksum is stored in the checksum field

Checksum (cont'd)

- **Checksum testing**
 - 1. the sum of all words (header and data) is calculated
 - 2. the sum is completed
 - **3.** if the result obtained in step 2 is 16 0s, the message is accepted; otherwise, it is rejected.

9.3 Debugging Tool

Tools for debugging in Internet

Ping

Check the host or router is alive or not

Traceroute

□ Trace the route of the packet

Ping

Result of ping to test the server fhda.edu

\$ ping fhda.edu

PING fhda.edu (153.18.8.1) 56 (84) bytes of data. 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=0 tt]=62 time=1.91 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=1 ttl=62 time=2.04 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=2 ttl=62 time=1.90 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=3 ttl=62 time=1.97 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=4 ttl=62 time=1.93 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=5 ttl=62 time=2.00 ms tt = 6264 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=6 time=1.94 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=7 ttl=62 time=1.94 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=8 ttl=62 time=1.97 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=9 ttl=62 time=1.89 ms 64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=10 ttl=62 time=1.98 ms

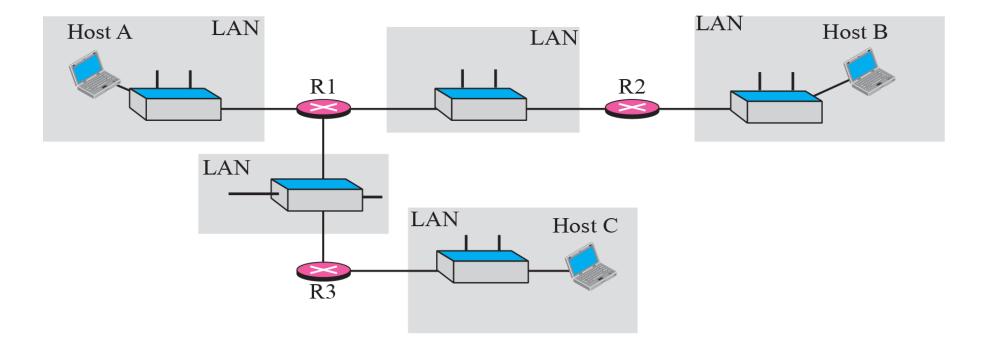
--- fhda.edu ping statistics ---

11 packets transmitted, 11 received, 0% packet loss, time 10103 ms rtt min/avg/max = 1.899/1.955/2.041 ms

Ping

Result of ping to test the server adelphia.net. Note that we sent 14 packets, but only 13 have been returned

\$ ping mail.adelphia.net


PING mail.adelphia.net (68.168.78.100) 56(84) bytes of data. 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=0 ttl=48 time=85.4 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=1 time=84.6 ms ttl=48 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=2 ttl=48 time=84.9 ms time=84.3 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=3 ttl=48 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=4 ttl=48 time=84.5 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=5 time=84.7 ms ttl=48 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=6 ttl=48 time=84.6 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=7 ttl=48 time=84.7 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=8 time=84.4 ms ttl=48 64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=9 ttl=48 time=84.2 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=10 time=84.9 ms ttl=48 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=11 time=84.6 ms ttl=48 time=84.5 ms 64 bytes from mail.adelphia.net (68.168.78.100): icmp seq=12 ttl=48

--- mail.adelphia.net ping statistics ---

14 packets transmitted, 13 received, 7% packet loss, time 13129 ms rtt min/avg/max/mdev = 84.207/84.694/85.469

The traceroute program operation

Result of traceroute from the computer voyager.deanza.edu to the server fhda.edu

\$ traceroute fhda.edu

traceroute to fhda.edu (153.18.8.1), 30 hops max, 38 byte packets

1 Dcore.fhda.edu	(153.18.31.25)	0.995 ms	0.899 ms	0.878 ms
2 Dbackup.fhda.edu	(153.18.251.4)	1.039 ms	1.064 ms	1.083 ms
3 tiptoe.fhda.edu	(153.18.8.1)	1.797 ms	1.642 ms	1.757 ms

Result of traceroute from the computer voyager.deanza.edu to the xerox.com

\$ traceroute xerox.com

traceroute to xerox.com (13.1.64.93), 30 hops max, 38 byte packets

1 Dcore.fhda.edu	(153.18.31.254)	0.622 ms	0.891 ms	0.875 ms
2 Ddmz.fhda.edu	(153.18.251.40)	2.132 ms	2.266 ms	2.094 ms
3 Cinic.fhda.edu	(153.18.253.126)	2.110 ms	2.145 ms	1.763 ms
4 cenic.net	(137.164.32.140)	3.069 ms	2.875 ms	2.930 ms
5 cenic.net	(137.164.22.31)	4.205 ms	4.870 ms	4.197 ms
6 cenic.net	(137.164.22.167)	4.250 ms	4.159 ms	4.078 ms
7 cogentco.com	(38.112.6.225)	5.062 ms	4.825 ms	5.020 ms
8 cogentco.com	(66.28.4.69)	6.070 ms	6.207 ms	5.653 ms
9 cogentco.com	(66.28.4.94)	6.070 ms	5.928 ms	5.499 ms

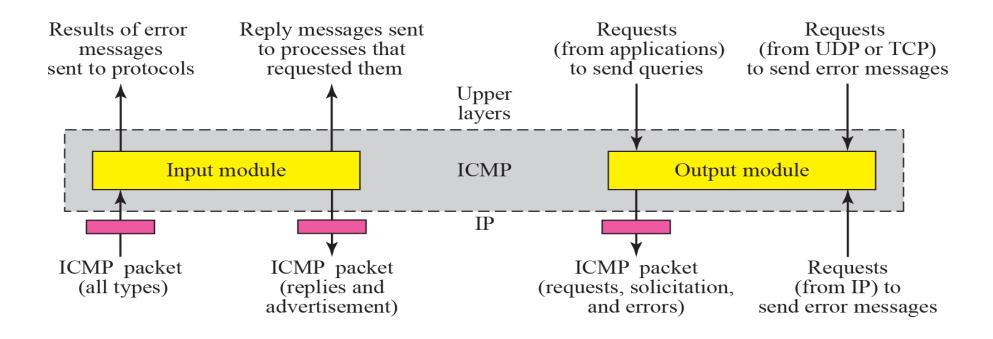
Traceroute to localhost (loopback)

\$ traceroute voyager.deanza.edu

traceroute to voyager.deanza.edu (127.0.0.1), 30 hops max, 38 byte packets

1 voyager (127.0.0.1) 0.178 ms 0.086 ms 0.055 ms

Result of traceroute between fhda.edu and mhhe.com. Note that we cannot find whole route. When traceroute doesn't receive a response within 5 seconds, it prints asterisk to signify a problem


\$ traceroute mhhe.com

traceroute to mhhe.com (198.45.24.104), 30 hops max, 38 byte packets

1	Dcore.fhda.edu	(153.18.31.254)	1.025 ms	0.892 ms	0.880 ms
2	Ddmz.fhda.edu	(153.18.251.40)	2.141 ms	2.159 ms	2.103 ms
3	Cinic.fhda.edu	(153.18.253.126)	2.159 ms	2.050 ms	1.992 ms
4	cenic.net	(137.164.32.140)	3.220 ms	2.929 ms	2.943 ms
5	cenic.net	(137.164.22.59)	3.217 ms	2.998 ms	2.755 ms
6	SanJose1.net	(209.247.159.109)	10.653 ms	10.639 ms	10.618 ms
7	SanJose2.net	(64.159.2.1)	10.804 ms	10.798 ms	10.634 ms
8	Denver1.Level3.net	(64.159.1.114)	43.404 ms	43.367 ms	43.414 ms
9	Denver2.Level3.net	(4.68.112.162)	43.533 ms	43.290 ms	43.347 ms
10	unknown	(64.156.40.134)	55.509 ms	55.462 ms	55.647 ms
11	mcleodusa1.net	(64.198.100.2)	60.961 ms	55.681 ms	55.461 ms
12	mcleodusa2.net	(64.198.101.202)	55.692 ms	55.617 ms	55.505 ms
13	mcleodusa3.net	(64.198.101.142)	56.059 ms	55.623 ms	56.333 ms
14	mcleodusa4.net	(209.253.101.178)	297.199 ms	192.790 ms	250.594 ms
15	eppg.com	(198.45.24.246)	71.213 ms	70.536 ms	70.663 ms
16					

9.4 ICMP Package

Input module

- handling all received ICMP message
- invoked when an ICMP packet is delivered to it from the IP layer
- if the received packet is a request or solicitation, the module creates a reply or an advertisement and sends it out
- if the received packet is a redirection message, the module uses the information to update the routing table
- if the received packet is an error message, the module informs the protocol about the situation that caused the error

Pseudocode for Input Module

1	<pre>ICMP_Input_module (ICMP_Packet)</pre>
2	{
3	If (the type is a request)
4	{
5	Create a reply
6	Send the reply
7	}
8	If (the type defines a redirection)
9	{
10	Modify the routing table
11	}
12	If (the type defines other error messages)
13	{
14	Inform the appropriate source protocol
15	}
16	Return
17	}

Output Module

- responsible for creating request, solicitation, or error messages requested by a higher level or the IP protocol.
- the module receives a demand from IP, UDP or TCP to send one of the ICMP error messages
 - □ if the demand is from IP
 - check first that request is allowed
 - ICMP message cannot be created for four situations;
 - 1. ICMP error message
 - 2. Fragmented IP packet
 - 3. Multicast IP packet
 - 4. IP packet having IP address 0.0.0.0 or 127.X.Y.Z
- May also receive a demand from an application program to send one of the ICMP request or solicitation messages

Pseudocode for Output Module

```
1
    ICMP_Output_Module (demand)
2
    {
       If (the demand defines an error message)
3
 4
        {
                If (demand comes from IP AND is forbidden)
 5
 6
                 {
 7
                      Return
                 }
 8
                 If (demand is a valid redirection message)
 9
10
                 {
11
                      Return
12
                 3
13
                Create an error message
14
        If (demand defines a request)
15
        {
16
             Create a request message
17
        }
        Send the message
18
19
        Return
20
    }
```


Summary

- The Internet Control Message Protocol (ICMP) supports the unreliable and connectionless Internet Protocol.
- ICMP messages are encapsulated in IP datagrams. There are two categories of ICMP messages: error-reporting and query messages. The error-reporting messages report problems that a router or a host may encounter when it processes an IP packet. The query messages, which occur in pairs, help a host or a network manager get specific information from a router or another host.
- The checksum for ICMP is calculated using both the header and the data fields of the ICMP message.
- There are several tools that can be used in the Internet for debugging. We can find if a host or router is alive and running. Two of these tools are ping and teacerouter.
- A simple ICMP design can consist of an input module that handle incoming ICMP packets and an output module that handles demands for ICMP services.

